titanium oxide tio2 factories

...

The vitaminC@P25TiO2NPs, on the other hand, were obtained through an optimized method based on Mallakpour et al. [27]. Initially, 0.02 g of P25TiO2NPs were dispersed in 1 mL of ultrapure water and stirred in a Vortex. Next, 100 μL of HCl (0.01 M) were added (pH 2) to 100 uL of P25TiO2NPs to avoid gel formation. Then, 100 μL of vitamin C dissolved in ultra-pure water (5.0 × 10−3 M) solution were added to the mixture and was ultrasonicated for 30 min. Finally, vitamin C was added in excess to gain a beige-orange color suspension, and the ultrasonication continued for another 30 min. The pellet obtained after centrifuging the suspension for 10 min at 4500 rpm was resuspended in ultrapure water, centrifuged again, and then lyophilized.

...

While loose titanium dioxide presents a problem, titanium dioxide within sunscreen formulations presents a much safer option than conventional sunscreen chemicals like oxybenzone and octinoxate. However, titanium dioxide may become dangerous when it is nanoparticle size. Generally, nanoparticles can be 1000 times smaller than the width of a human hair. Despite nanoparticles becoming increasingly common across industries, they have not been properly assessed for human or environmental health effects, nor are they adequately regulated. Researchers don’t quite understand the impacts nanoparticles could have on human health and the environment. However, because of their infinitesimally small size, nanoparticles may be more chemically reactive and therefore more bioavailable, and may behave differently than larger particles of the same substance; these characteristics may lead to potential damage in the human body or ecosystem.

...